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APPROXIMATION OF ANALYTIC FUNCTIONS: 
A METHOD OF ENHANCED CONVERGENCE 

OSCAR P. BRUNO AND FERNANDO REITICH 

ABSTRACT. We deal with a method of enhanced convergence for the approxima- 
tion of analytic functions. This method introduces conformal transformations 
in the approximation problems, in order to help extract the values of a given 
analytic function from its Taylor expansion around a point. An instance of 
this method, based on the Euler transform, has long been known; recently we 
introduced more general versions of it in connection with certain problems in 
wave scattering. In ?2 we present a general discussion of this approach. 

As is known in the case of the Euler transform, conformal transformations 
can enlarge the region of convergence of power series and can enhance sub- 
stantially the convergence rates inside the circles of convergence. We show 
that conformal maps can also produce a rather dramatic improvement in the 
conditioning of Pade approximation. This improvement, which we discuss the- 
oretically for Stieltjes-type functions, is most notorious in cases of very poorly 
conditioned Pade problems. In many instances, an application of enhanced 
convergence in conjunction with Pade approximation leads to results which are 
many orders of magnitude more accurate than those obtained by either classical 
Pade approximants or the summation of a truncated enhanced series. 

1. INTRODUCTION 

Perturbation methods and series expansions lie at the heart of most mathe- 
matical discussions of problems in science and engineering. Linear partial and 
ordinary differential equations amount, in many cases, to first-order perturba- 
tion theory applied to basic principles of physics. Perturbation theory of higher 
order, on the other hand, has led to an understanding of phenomena that cannot 
be accounted for accurately by low-order expansions [22, 16, 1, 17, 4, 21, 7]. 
Yet, high-order perturbation series are often regarded critically. Convergence 
results for the classical approximation methods are not always available, and 
numerical ill-conditioning is always a concern. Thus, new summation methods 
and further understanding of classical methods are necessary. 

Here we deal with a method of enhanced convergence for the approximation 
of analytic functions. This method introduces conformal transformations in the 
approximation problems in order to help extract the values of a given analytic 
function from its Taylor expansion around a point. An instance of this method, 
based on the Euler transform, has long been known; recently we introduced more 
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general versions of it in connection with certain problems in wave scattering [7, 
6]. In ?2 we present a general discussion of this approach. 

As in known in the case of the Euler transform [23, 14, 15], conformal trans- 
formations can extend the region of convergence of power series and can en- 
hance substantially the convergence rates inside the circles of convergence. In 
??3 and 4 we show that they can also produce a rather dramatic improvement 
in the conditioning of Pade approximation. This improvement, which we dis- 
cuss theoretically for Stieltjes-type functions, is most notorious in cases of very 
poorly conditioned Pade problems. In many instances, an application of en- 
hanced convergence in conjunction with Pade approximation leads to results 
which are many orders of magnitude more accurate than those obtained by ei- 
ther classical Pade approximants or the summation of a truncated enhanced 
series (see ?4). 

Consider the Taylor series of a function f(z) around z = 0. Clearly, poor 
convergence and lack of convergence of the Taylor series at a point zo are re- 
lated to the arrangement of the singularities of f and the point zo relative 
to z = 0. The method of enhanced convergence uses conformal maps to ma- 
nipulate the complex z-plane so as to produce an arrangement of zo and the 
singularities of f which is favorable for the summation of the series. In ad- 
dition to the sum of the truncated enhanced series, Pade approximants of the 
enhanced function with denominators of low degree can be used at any point 
at which the conformal transformation has produced a convergent series, and 
can yield much better approximations than the enhanced series itself with a 
negligible additional computational cost (see ?4). 

A different phenomenon occurs in connection with Pade approximation with 
denominators of high degree: the conditioning of the Pade problem of the 
function f in the new variables improves very substantially. In other words, 
enhanced convergence acts as a preconditioner for Pade approximation. For 
example, a Fortran double-precision calculation of the function f (z) = 
log(l + z) via regular Pade approximation, of any order, will not yield, at 
z = 20, more than the first four correct digits of log(21). After composition 
with an appropriate conformal map, 13 correct digits can be obtained. In fact, 
diagonal enhanced approximants of orders 50 already yield 9 correct digits, 
while the number of correct decimals is 13 for approximations of orders 120 
to 180. For z = 200, an enhanced Pade approximation can produce up to 6 
correct figures, while only one correct digit can be obtained through direct Pade 
calculation. 

Since Pade approximants are connected with J-continued fractions and the 
latter, if written in partial fraction form, with Gaussian quadrature, the con- 
ditioning problem for Pade approximants is closely related to the conditioning 
problem for Gaussian quadrature rules1. The possible implications of the meth- 
ods in this paper on the conditioning problem for Gaussian quadrature rules 
[1 1, 12] remain to be explored. 

A comment is in order with regard to the calculation of the coefficients of 
the power series of a function f in the new variables. These coefficients can 
be produced either (1) by certain linear operations on the coefficients of the 
series of f(z), or (2) by some alternative direct calculation of the coefficients 

1 We thank Professor W. Gautschi for pointing out this connection to us. 
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of the composite function. The information contained in the enhanced coef- 
ficients calculated by the first method will be limited by that contained in the 
coefficients of the series of f(z), even though the Taylor coefficients of the true 
enhanced series encode, in certain cases, more information than those of the 
regular series. Indeed, as shown in [15, 24], the linear algebra that produces the 
enhanced coefficients from the coefficients of the direct series is ill-conditioned 
in some situations. Therefore, the second approach is to be preferred, if the 
corresponding accurate calculation is possible. 

2. ENHANCED SERIES 

Let Q be a connected domain in the complex plane, 0 E Q2, let f(z) be 
an analytic function defined in Q, and let D denote the circle of convergence 
of the Taylor series of f about z = 0. The divergence of the Taylor series of 
f at a point z0 outside D is related to the presence of singularities of f on 
the boundary of D. We shall show that such singularities are also the cause 
of numerical ill-conditioning in Pade approximation; see ?3. It is clear, then, 
that it should be useful to deform the domain Q conformally, keeping z = 0 
fixed, in such a way that the image of the point z0 is closer to the origin than 
the image of any of the singularities. This simple observation is the basis of the 
method under investigation. 

The implementation of this procedure relies on some a priori knowledge of 
the domain of analyticity of the function f. In applications, such informa- 
tion can usually be obtained from physical considerations, Pade approximation 
[3, ?2.2], or even by studying the convergence of several enhanced series [7]. 
Once this information is available, the rearrangement of the singularities can 
be performed in many ways; in the following subsection we discuss some nat- 
ural choices of conformal transformations that have proved to perform well. 
A few simple examples follow in ?2.2. Further examples and applications, to- 
gether with a discussion of the numerical aspects of the method in high-order 
applications will be given in ??3 and 4. 

We begin our study by considering conformal maps which extend the radius 
of convergence of the Taylor series of an analytic function. 

2.1. Geometrical considerations. Let f be an analytic function defined in Q. 
We seek a conformal map 4 = g(z) defined in Q with g(0) = 0 and such that 
the image 40 = g(zo) of a given point z0 lies inside the circle of convergence 
of the Taylor series of f o g- 1 about 4 = 0. If such a function g is available, 
the value f(zo) can then be approximated by summing the truncated power 
series of fog-l(4) at 4 = 0. 

Motivated by their geometrical properties as well as by their simplicity, ra- 
tional fractions of the form 

K 

(1) g(z) Azi 
z + B1 

appear as natural choices. We have found [7] that powers of these transforma- 
tions can also be useful. The particular case K = 1 in (1) corresponds to the 
Euler transformation [23]. Our intuition here is that, if f is conformal, then 
clearly, an enhancer g that eliminates the singularities of f completely is the 
function f itself: g = f. It therefore seems reasonable to allow for g to 
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mimic part of the singular behavior of the function f. In this way, some of 
the singularities of f are mapped away to infinity. 

The performance of the method depends in a critical way on the parameters 
Ai and Bi in (1). If we are interested in the computation of f(zo) by com- 
position with g-1, we may seek a combination of parameters for which the 
convergence of the series of f o g-I is fastest. Such optimal convergence rates 
result if the parameters Ai and Bi are chosen in such a way as to minimize 
the quotient 

(2) g(zo)|_ 'RO R = radius ofconvergence of fo g- about= 0, 
R R 

since the error in a truncated expansion of degree n is of order IXo/RIn+i. This 
fact was noted by Scraton [23] in his study of the Euler transform. Note that 
the parameters can be selected numerically by optimizing the convergence rates 
even if no information is known about the singularities of the function f. 

To illustrate these ideas, let f be an arbitrary function and assume we know 
its singularities lie in the interval [-1/a, - 1/b]. For example, we can take f 
to be a Stieltjes or Hamburger function of the form [3, Chapter 5] 

(3) f(z) = ,b )du=ECn Zn 
n,O 

with 0 > 0. For the conformal map we shall first use 

(4) 
gi(z)= 

+ 

(AABER)z 
namely, the function that produces the Euler transform. The singularities of 
f o I are delimited by gi (- 1/a) and gi (- 1/b), and, therefore, the radius 
of convergence of the composite map is the smaller of the absolute values of 
these two numbers. It follows from (2) that a choice of parameters that gives 
optimal convergence rates must minimize the expression 

(5) max gi(-1 /a)' gi( -1/b)|J 

It is easily seen from (5) that the optimal B does not depend on zo and that 
it is given by 

(6) B = a2 

see [23]. The parameter A cancels in formula (5) and can be normalized to 1. 
The next simplest example of conformal maps of the type (1) is 

(7) 92 (Z) 
~A1z A2Z 

(7) g2(z) = z+B, z + B2 

Motivated by (3) and in order to ensure the invertibility of g2, we assume 
A1, A2, B1, B2> 0. The (relevant branch of the) function g7-1 is then given 
by 

gi-I( = (B1 + B2) -(AIB2+ A2B1) + VA 
g2~~~) 2(Al +A2 - ~) 
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Images Cr of circles 141 = r Images Dr of circles 141 = r 
under the conformal transformation under the conformal transformation 

g = = Z/(z+0.8) = g2(z) = z/(z+0.692) + 0.560 z/(z+1.234) 

C14 z-plane < 4;/ z-plane 

-2- .' \ 

1.25CO5D I' \ 

-4 4 2 - 

FIGURE 1 (a) FIGURE 1 (b) 

where 

A = (B1 -B2 )22 + 2(B1 - B2)(A1B2 - A2B1) + (A1B2 + A2B1 )2. 

Again, the optimal choice of parameters minimizes the quotient in (2). In this 
case it is not possible to derive a simple formula such as (6) for the parameters 
Ai and Bi. Here we need to deal not only with the singularities of f but also 
with those introduced by g7-1. It is not difficult to check, however, that the 
optimal situation is the one in which the parameters minimize the expression 

(8) max 9( g2(z |, g2(ZO) 9g2(ZO) (8) max 
~~~~g2(-1/a) ' g2(-1/b) ' 

rA 

where rA denotes the absolute value of the (complex conjugate) roots of A as 
a function of 4: 

r = A2B1 + A1B2 
2- 1 

As in (5), we can take one of the parameters Ai in (8), say A1, to equal 1. 
It is reasonable in some cases to take zo = oo in (8) so as to optimize the 

convergence rates of the approximator in the positive real axis (see ?2.2). With 
this provision (and taking A1 = 1), the parameters A2, B1, and B2 must be 
chosen so as to minimize 

( 1+A2 I1+A2 I1+A2 
(9) max g2 (- I/a) 

5 
g2 (- I /b) r, 

Geometrical insight can be gained by inspection of the effect of the conformal 
maps described above on circles in the 4-plane. In Figure 1(a) (resp. 1(b)) we 
have plotted the images Cr (resp. Dr) in the z-plane of the circles 14l = r 
under the transformation 4 = gl(z) (resp. 4 = g2(z)). We have chosen the 
singularity region to be the interval [-2, -1/2], i.e., a = 1/2, b = 2, which 
corresponds to the function f in (10) below. Thus, the Taylor series of f 
around z = 0 converges in the circle of radius 2 in the z-plane centered at the 2 
origin. From (6) it follows that the parameter B in g, is, in this case, equal 
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to 0.8, while a numerical minimization of (9) yields the values A2 = 0.560, 
B1 = 0.692, and B2 = 1.234 (cf. (12)) for the conformal map g2. 

Take, for example, the curve C1.25 in Figure l(a). This circle is the image 
under the map 4 = g1(z) of the circle 141 = 1.25. The region 141 < 1.25 is 
mapped onto the exterior of C1.25, i.e., onto the connected component contain- 
ing z = 0. Thus, since this region does not intersect the interval [-2, -1/2], 
we see that, for all points z outside C1.25, the value of f(z) can be obtained 
by summing the Taylor series of f o g- I at 4 = g, (z) . Similar considerations 
hold for all other curves in Figure 1 (a) and 1 (b). The radius of convergence of 
f o g1 is r = 5/3 while that of f o g7 1 is r = 3. We see that the enhanced 
series will in fact converge to f(z) for all z outside the critical curves C513 
and D3. 

In the following subsection we illustrate the ideas above with a few low-order 
approximation problems. Higher-order approximation will be dealt with in ??3 
and 4. 

2.2. Some simple examples. Consider first the function 

+z/2 3Z+ 39Z2_ 
(1 0) f(z)= I+2z 4 32 
A second-order approximation problem for this function is used in [3] to demon- 
strate some of the outstanding properties of Pade approximants. The [L/M] 
Pade approximant of a function f(z) = E=o CnZ n is defined (see [3]) as a 
rational function 

1 + bl z + + bMZM 

whose Taylor series agrees with that of f up to order L + M. A particular 
[L/M] approximant may fail to exist but, generically, [L/M] Pade approxi- 
mants exist and are uniquely determined by L, M, and the first L + M + 1 
coefficients of the Taylor series of f . For convergence studies and numerical 
calculation of Pade approximants see [3, 5, 8, 13]. 

The [1 / 1] Pade approximant of the function f in (10) is given by 

1+ I-z 
(11 l) [ 1/ 1] = 83 

18 

Certainly, the information used to construct (11) (namely the first three terms 
in the Taylor series of f) would permit us to compute the [2/0] and [0/2] 
approximants also. The choice of the [1 / 1] approximant may be seen as incor- 
porating certain additional structural information one has about the function 
f.- 

Let us now find enhanced series of order 2 for (10). Consider first the con- 
formal map g, defined in (4). In this case, (6) yields B = 0.8, and taking 
A = 1, we obtain g, (z) = z/(z + 0.8). Therefore, our approximation reads 

0.6z +0.18z2 29z2+ 56z + 32 
z + 0.8 (z + 0.8)2 2(5z + 4)2 

Another enhanced series can be obtained by using the conformal map g2 in 
(7). The expression in (9) can be (numerically) minimized, and the optimal 
parameters turn out to be 

(12) Al = 1, A2 = 0.560, B1 = 0.692, B2 = 1.234. 
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Our second enhanced series approximation is then given by 

0.395z 0.221z ( z 0.560z 2 
1- + 0.069 + z + 0.692 z + 1.234 z + 0.692 z + 1.234) 

The three approximations lie close to the function f, with errors at z = oo of 
8%, 16%, and 10% for Pade, g1 -enhanced, and g2-enhanced, respectively. The 
Pade approximation is slightly more accurate than the other two; this need not 
be the case, however, as we illustrate with the following example. 

Let 

f) (z + 2)(z +3) + 

The [1 / 1] Pade approximant of f is given by 

1 + 23z [1/11 - ~24 
18 

To compute the enhanced series corresponding to the map g1, we find from 
(6) that B = 2, and we take A = 1. Thus, the enhanced series is given by 

z z2 25z2+ 104z + 96 
6(z+2) 8(z+2)2 24(z+2)2 

Analogously, it is found that the parameters corresponding to the conformal 
map g2 are, in this case, given by 

A2 = 0.578, B1 = 1.732, B2 = 3.000, 

so that the enhanced series is 

0. 108z 0.063z _ ( z 0.578z 2 

1+z+ 1.732 + z+3 -0.051 zz+ 1.732 + z+ 3J 

Again, the three approximations are fairly accurate, taking into account the fact 
that they have been obtained by using only the first three coefficients of the 
Taylor expansion. In this case, either of the two enhanced series is a better 
approximation to the function f than the [1 / 1] Pade approximant: the errors 
at z = oo are of 9.5%, 4.2%, and 4.5% for Pade, g1-enhanced, and g2-enhanced, 
respectively. 

It is often the case in applications that a high number of terms in the power 
series representing the relevant quantities are required in order to reach a rea- 
sonable approximation (see, e.g., [22, 16, 1, 17, 4, 21, 7]). A variety of exper- 
iments (including those in [7]) have led us to believe that in such cases Pade 
approximation yields much better results than the summation of the truncated 
enhanced series. This is so even in cases in which Pade results give limited ac- 
curacy due to ill-conditioning. We therefore turn out attention to improving the 
conditioning of the Pade problem. As we shall show, such improvements can be 
obtained by nmans of the conformal changes of variables discussed above. For 
a study of the conditioning of the value problem for the truncated enhanced 
series in the particular case of the Euler transformation see [15, 24]. 
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3. HIGH-ORDER APPROXIMATIONS: CONDITIONING OF 

PADE AND ENHANCED PADE 

In problems in which high-order approximations are necessary, small numer- 
ical errors in the Taylor coefficients may lead to poor results for the values of 
the function. In this section we discuss the effect of these errors in the values 
of high-order Pade approximants and those of the Pade approximants of the 
enhanced series-which we will refer to as enhanced Pade approximants. To do 
this, we first introduce, in ?3.1, appropriate norms and corresponding condition 
numbers for the values of the Pade denominator. In ?3.2 we then restrict our- 
selves to Stieltjes-type functions and investigate the conditioning of the value 
problem for the Pade denominator of both direct and enhanced series. We con- 
clude that the conditioning of the Pade denominator problem of an appropriate 
enhanced series can be substantially better than that of the original series. Ex- 
amples in ?4 show that improvement in the denominator condition number is 
closely related to a corresponding substantial improvement in the overall quality 
of the approximations, and that much better numerical results can be expected 
of enhanced Pade than of Pade approximants for general analytic functions. 

Our theoretical discussion in ?3.2 concerns the value problem for the Pade 
denominator. While theoretical studies of the conditioning of the value prob- 
lem for Pade approximants are not available at present, the generalized belief is 
that the conditioning of the denominator problem determines that of the whole 
fraction (see [3]). It must not be understood, however, that the amplification 
of errors observed in the values of the Pade denominator is to be expected in 
the whole fraction. Indeed, the conditioning of the Pade fraction is observed to 
be very substantially better than that of the Pade denominator. The numerical 
experiments of Luke [20] shed some light on this astonishing property of Pade 
approximants, which remains, otherwise, not understood. Luke does not study 
the relative error in the denominator itself, and, indeed, our discussion in this 
regard appears to be the first one in the literature. At any rate, our present 
study of the conditioning of the Pade denominator in both the direct and en- 
hanced variables together with the numerical experiments of ?4 indicate clearly 
that there is a close correlation between the conditioning of the denominator 
problem and that of the whole fraction; or, in other words, improvement in 
the denominator condition leads to improvement in the condition of the whole 
fraction, even though a quantitative measure of the former is not necessarily a 
good quantitative measure of the latter. 

3.1. Condition numbers for the denominator value problem. The coefficients of 
the denominator of the [L/M] Pade approximant of the function 

00 

(13) f(z)=Zcnz, 
n=O 

are given by the solution of the linear system of equations 

CL-M+1 CL-M+2 * - * CL -r bM 1 CL+ 1 
(14) LCL-M+2 CL-M+3 ... CL+1 H bM-1 CL+2 

CL CL+1 . CL+M-1 IL i L CL+M J 

The numerical stability of the problem of computing the coefficients bn from 
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(14) is governed by the (e.g. 12) condition number of the matrix C in (14), 
i.e., by 

(15) Kc(C) = IICII HIC-lll. 
Here, IICII is the matrix norm associated with the 12 vector norm 

M 

11bnl = E1 Ibn12. 

n=1 

In other words, errors (3n) in the coefficients of (13) are amplified in the 
calculation of the denominator coefficients (bn), and result in relative errors 
which can be estimated by 

(J bn)II < K(C I)(Cn)I 

11 (bn)II1 - ( I)Il(Cn)IIl 

Our main problem, however, is that of calculating the values of the Pade 
approximant, and the condition number (15) does not provide a measure of the 
error in these values. In fact, the natural measure for the error in the values of 
the denominator is 

M 

(16) IE bnl zI. 
n=1 

For convenience we shall use a norm closely related to, but different from, (16), 
namely 

M 

(17) llbllz EJ Ibn12 Z12n 
n=1 

To treat the value problem for the Pade denominator, we observe that its 
coefficients satisfy the following system of equations 

[ CL-M+1 ZL-M+1 CL-M+2ZL-M+2 ... CLZL iF bMZM 1 

CL-M+2Z L-M+2 CL-M+3 ZL-M+3 CL+1 ZL+1 bM-lz Ml1 

(18) CLzL CL+1 ZL+1 CL+M- Z blz z (18) ~ ECL+l ZL+l1 
CL+2 ZL+2 

L CL+MZL+M J 

as follows from equations (14). We then define the condition number of the 
denominator value problem as the 12 condition number Kc (z) of the matrix 
in ( 18). This number permits us to bound the error Eb,z = J3bI I/ zbIIz by the 
error ec,z = lc /llzlllcllz, i.e., roughly 

16b,z < Kv(z)'6c,z- 

Notice that this condition number is unchanged if the problem is transformed 
via z --) Az (A E eR), as expected from dimensional considerations. This is not 
true, however, of the condition number (15) for the coefficient problem; that is, 
the number Kc(C) does change if the variable z is transformed homothetically. 
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3.2. Conditioning of the denominator value problem of Pade and enhanced Pade 
approximants. To gain insight on the effect that a rearrangement of the sin- 
gularities of the function f can have on the conditioning of the denominator 
problem (and therefore on the conditioning of the complete Pade fraction, ac- 
cording to the discussion at the beginning of ?3), assume that the singularity of 
f that lies closest to the origin is a simple pole at z = zo . Then in (13), (14) we 
have c, = const .z -n + o(I lzon) for large n , which explains the ill-conditioning 
of the matrix for large values of M. A conformal change of variables which 
equilibrates the influence of the closest singularities is therefore expected to 
have a beneficial effect on the conditioning of the denominator problem. In 
this section we provide a quantitative measure of the improvement under the 
assumption that f is a Stieltjes function with a positive radius of convergence. 

In what follows, we shall consider Stieltjes functions [3, Chapter 5], that is, 
functions which admit an integral representation 

Ab 0(u) du 
(19) f(z) = 1 I z 

Theorem 1 below permits one to estimate the improvement produced by a con- 
formal transformation of the type (4) in the condition number of the Pade 
problems for functions of the form zf (z), where f is a Stieltjes function (see 
Remark 1). 

We begin our discussion of the conditioning of the denominator problem 
with the following lemma, which follows readily from a change of variables. 

Lemma 1. Let f be a Stieltjes function of the form (19). Then, for any A and 
B we have 

A f(Bb- 1)/A q((Au + 1)/B) du 
f()z+B J(Ba-1)/A 

where 

(20) Az 

In other words, calling 

((Bb- 1)/A ((Au + 1)/B) du 
(21) e(~)= I ~ 

(Ba-1)/A 1 +XU 

we have 

(22) zf(z) =e(4). 

We continue with two lemmas about certain quadratic forms for the vector 
X = (xo, x1, ... , Xn) E Rn+l . These quadratic forms are closely related to the 
Pade approximants of Stieltjes functions, and they are given by integrals such 
as 

b 

XtA'MX = (X X1Uo + *v * + XnUn)'UmY(U) du 
(23) n n 

Z (-1) i+J+MCi+I+m XiXj 
i=O j=0 
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where a and b are real numbers, a < b, and Ck are the Taylor coefficients of 
f in (19), i.e., 

rb 
Ck = (l)k uk0(u)du. 

Also, we shall denote 
A,m=A','d if 0(u) = 1. 

We see that the matrices Al, m are positive definite provided either 0 < a < b 
or m is even; in the latter case we shall write 

(24) En,1 = An,m if m =21. 

Clearly, then 
b 

XtEn,Ix (xoUl +xiu 1+ + + xnuI+n )2 du. 

Lemma 2. Let m = 21. Then, we have 

xtEn n ,Ix= (b - a)ytH n+1y 

where y is related to x via 

(25) y= DTa,X. 

Here, Hn+1 denotes the (n + 1 + 1) x (n + 1 + 1) Hilbert matrix 

Hn 
i+ j-1 (1 i,j<n+l+1), 

D=D(b-a) is the (n + 1 + 1) x (n + 1 + 1) diagonal matrix 

(26) Dii = (b - a)'-' (I < i < n + I+1) 
Ta is the (n+1+1) x (n+1+1) matrix 

(27) (Ta)i (i ) aj-i < i j < n + + 1), 

and JY is the matrix of the inclusion of Rn+1 into R1+n+1 

(28) x=(O ...,O,xo Xn). 
Proof. By a change of variables, we obtain 

b-a 
xtEn,lx - j (xo(v + a)' + x1 (v + a)'+' + + xn(v + a)l+n)2 dv 

rb-a 
- jb-(o + 1 *v + l+nv +n)2 dv, 

where x = (xo, ... , xi+n) is given by Y = TaJYx with the matrices Ta and 
JY defined by (27) and (28), respectively. A further change of variables yields 

1 
xtEn, Ix =|(yo + Ylua + + Y1+nu I+n)2 (b -a) du =(b -a)ytHn+ly, 

with Y = (Yo, , Yl+n) = DY, and D given by (26). 0 

Lemma 3. Assume the function 0 is positive and bounded, 0 < C1 < q < C2 < 

ox. Then, the following inequalities hold: 
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a > 0 and m an arbitrary nonnegative integer: then 

KlytHny < XtAnX < K2ytHny 

for certain constants K1 and K2. Here, x and y are related through the 
equation y = Dba Tax, where Db_a and Ta are the (n + 1) x (n + 1) matrices 
whose entries are given by equations (26) and (27) (with 1 = 0), respectively. 

9 a E R arbitrary and m = 21 a nonnegative even integer: then 

KlytHn+ly < xtAX nX < K2ytHn+ly. 

Here, x and y are related through equation (25). 
Proof. Follows easily from the previous lemma. ol 

The estimation of the condition number for the denominator value problem 
will result from the following theorem. 

Theorem 1. Let f and e be defined by (19) and (21), respectively. Let 

m=L-(M-l)=21 and n=M-1, 

and, for a given complex z, define Dz E Rn +I xn+I to be a diagonal matrix given 
by 

(Dz)ii =zi+ 1 (1< i n +1). 

Then the condition numbers K, (z) and Ki(,) for the (denominator) value prob- 
lem of the [L/M] Pade approximants for thefunctions f(z) and e(4) are given 
by 

(29) Kcv (z) K((Dba Ta>YDz)tHn+,(Db- Ta>JDz)) 

and 

(30) Kv K4 z((D Y2 TY,_ g`1)tHn+l (DY2 TYI gDA)), 

where 
Yi-Ba - 1 an 2-B(b 

- a) Ba-iA and Y2=A Yi= A A 

and K(C) denotes the 12 condition number of a matrix C. 
If a > 0, then the estimate (29) sharpens to 

Kcv(z) _K((Db-aTaDz)tHn(Db-aTaDz)). 

Remark 1. The theorem above permits us to obtain expressions for the [L + 
1/M] denominator condition number of functions zf(z) and its transform 
in the 4-variables Xe(Q), see (20), where f is a Stieltjes function (19) and 
L - (M - 1) is even. Indeed, these numbers are identical to the corresponding 
ones for the [L/M] approximants of the functions f (z) and e(4) respectively; 
the latter are calculated in the theorem. 

Proof of Theorem 1. We shall only show how to obtain (29) since, using Lemma 
1, we can establish (30) in a similar way. Let S and S(z) denote the matrices 
in (1 4) and (1 8), respectively, and let J be the (n + 1) x (n + 1) diagonal matrix 
with entries Jii = ()1+i- I . Since 

Kc(S(z)) = Kc(JS(z)J), 
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FIGURE 2. Condition number as a function of B, 4 = 

z/(z +B): a = 0, b = 1, m = 0, z = 20 

it suffices to estimate the condition number of the matrix R = JS(z)J. Now, 
from the equation 

R(i+l)(j+l) = (JS(z)J)(i+l)(j+l) = (-l)i+j+mCi+j+mzi+j+m (0 < i, j < n) 

and (23) we deduce that 
R = DzA nmDz. 

Since for a positive definite and symmetric matrix F we have 

IFII = max xtFx and IF1 = 1 

we conclude, from Lemma 3, that 

K(R) = K(DzAo mDz) K((Db-aTaJDz)tHf+l(Db-a TaJDz)). O 

The right-hand sides of (29) and (30) can be evaluated using the fact that 
Ts-' = T, and the explicit formula for the inverse of the Hilbert matrix (see, 
e.g., [10]) 

(N)-1- (_ li+j (N + i)! (N + j)! (H 
'[J1 (N + 1 -j)!(N + 1- i)!(j - 1)!2(i - 1)!2(i + j - 1)- 

In Figure 2 we show the dependence of the right-hand side of (30) on the 
parameter B in (4) in the case m = 0, a = 0, and b = 1 (which yields, in 
particular, numbers that apply to the function f(z) = log(l + z)/z). In the 
figure, A was normalized to 1, so that 

z 
z+B ' 

and we have plotted 
(Cv, 25/KV, 20) 1/5 for z = 20 
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as a function of B. Here K,c k is the condition number (30) with 1 = 0 and 
n =k. 

In Figure 3 we plot the errors in the [20/21] enhanced Pade approximants 
at z = 20 for f(z) = log(l + z)/z as a function of B. We observe that, as 
claimed at the beginning of this section, the condition number in Figure 2 as 
well as the errors in Figure 3 are smallest for the value of B in (6). 

Finally, in Figure 4 we present a plot of the condition numbers as a function 
of z for the functions f ("z-variable") and e (" c-variable") (cf. (21)) again 
in the case m = 0, a = 0, and b = 1 . Here the parameters for the conformal 
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map are A = 1 and B = 2, and we see that the conditioning is in fact improved 
by the change of variables. 

4. EXAMPLES 

In this section we apply the ideas presented in this paper to some elemen- 
tary analytic functions. These functions have been chosen so as to illustrate 
the quality of the approximations that can be obtained-by means of a sim- 
ple change of variables-in problems in which classical approximants have had 
limited success. As we have said, the key to the most successful approxima- 
tions is an accurate calculation of the coefficients of the enhanced series. As 
noted in [15, 24], the calculation of these coefficients by direct composition of 
power series may produce enhanced coefficients of poor quality. In most of 
the examples that follow, we will therefore obtain the enhanced coefficients by 
alternative means. Because of the simplicity of the elementary functions used 
below, such accurate calculations do not represent a challenge, and they will be 
described in each case. In more complex applications, an accurate calculation 
of the enhanced coefficients may not be a simple matter and must be regarded 
as an integral part of the problem. These questions will, at any rate, be left for 
future work. 

From many numerical experiments, among which the ones in this section 
were chosen, a clear picture emerges: diagonal or close to diagonal enhanced 
Pade fractions are probably never worse and can be very substantially better 
than classical Pade approximants or truncated enhanced series. The degree of 
improvement of the enhanced Pade method over regular Pade approximants is 
most notorious in cases of poorly conditioned Pade problems. Enhanced Pade 
fractions with denominators of low degree can be as accurate or, if the number 
of coefficients is large enough, slightly more accurate than enhanced diagonal 
Pade fractions. If a large number of coefficients are available, this option may be 
attractive since it reduces the ill-conditioning of the problem and, at the same 
time, it results in a lower computational cost. Summation of the truncated 
enhanced series, on the other hand, is an alternative to other approximants in 
low-order problems (see ?2.2), but it appears that any of the other proposed 
methods performs better in problems of higher order. 

The computations that follow have been performed in Fortran, and double- 
precision arithmetic has been used in all cases. Pade approximants have been 
calculated by means of the approach recommended in [13, 3], that is, via so- 
lution of the denominator equations by Gaussian elimination with partial piv- 
oting and iterative refinement [10]. Also, for simplicity, attention is restricted 
to conformal maps of the type (4). The accuracy of the enhanced approxi- 
mants is independent of the parameter A in (4), and we have therefore taken 
A = 1. Other conformal maps can, of course, be useful in these and other 
circumstances. 

Our first example is a classical one in approximation theory. 
* f(z)= log(l+z) 
In Table 1 we show the values of the [I / 2] Pade and enhanced Pade approx- 

imants for the function f (z) = log( 1 + z) . Since the singularities of log( 1 + z) 
lie on the interval [-o, -1], we see from (6) that the optimal constant B is 
B = 2. 

A technical point here relates to the calculation of the coefficients of the 
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TABLE 1 [ N / N] approximants for log(l + z) 

N z log(1 + z) Pad6 Enh. Pade 
20 20 3.044522437723 3.04399 3.04398878414 
40 3.04461 3.044522360574 
60 3.04448 3.044522437596 
80 3.04418 3.044522437727 

100 3.04446 3.044522437722 
120 3.04449 3.044522437724 
140 3.04450 3.044522437723 
160 3.04462 3.044522437723 
180 3.04436 3.044522437723 
20 200 5.30330 5.04 5.03577 
40 5.33 5.28588 
60 5.18 5.30093 
80 5.09 5.30276 

100 5.17 5.30305 
120 5.19 5.30324 
140 5.20 5.30328 
160 5.71 5.30329 
180 5.14 5.30330 

enhanced series. Because the composite function f o gj l is given by 

f o g- log (1 + 124< log( l + 4)-log( l - 4 

the enhanced series can simply be obtained as the difference of the series of 
log( l +4) and log( 1 - ) . A calculation of the enhanced coefficients by composi- 
tion of the series of f and g, results in enhanced approximants of comparable 
or worse quality than the corresponding Pade fractions. 

Table 1 shows that, as noted in the introduction, enhanced Pade approxi- 
mants produce up to 13 correct digits of log(21), while ordinary Pade fractions 
do not produce more than the first four digits. 

A point of interest here relates to the fact that, for approximants with de- 
nominator and numerator of the same degree, in exact arithmetic, and for the 
conformal map (4) which is being used, the Pade and enhanced Pade calcu- 
lations coincide. This is a well-known and simple fact, sometimes called the 
theorem of Baker, Gammel, and Wills [2]; see also Edrei [9]. We conclude that 
the improvement in the approximation is solely due to a better conditioning for 
the value problem of enhanced approximants. 

* Enhanced series and low-degree denominator enhanced Pade 
Let 4 be a point in the disk of convergence of the enhanced series. Since 

the series in the enhanced variables converges at , its Pade approximants with 
denominators of low degree usually converge there also. These high-order low- 
denominator-degree enhanced Pade approximants can produce very good results 
(with a low computational cost) as we illustrate in Table 2. It is a remarkable fact 
that a Pade approximant with a denominator of degree as low as 5 can produce 
such a substantial improvement of the convergence rate of the enhanced series. 

In Table 2 we show higher-order approximations for the function f(z) = 
log(l+z)/z at z=20,where 

log(21)/20 = 0.1522261218861711. 



APPROXIMATION OF ANALYTIC FUNCTIONS 211 

TABLE 2. High-order approximants for log( 1 + z)/z 

N Pade Enh. Series Enh. Pade (low) Enh. Pade (high) 
60 0.1522228 0.15224926416 0.15222613236258 0.15222612189111 

100 0.1522238 0.15222642286 0.15222612190656 0.15222612188430 
160 0.1522252 0.15222612249 0.15222612188617 0.15222612188623 
180 0.1522015 0.15222612197 0.15222612188617 0.15222612188614 

TABLE 3. [ N / N ] approximants for (1+(1+i)z)(1+-(1i)z) 2 2 ~ ~ ~~~~(+O(+))1+(1 -i)z) 

N z f(z) Pade Enh. Pade 
20 50 0.100903995976172 0.101691 0.101690955078874 
40 0.100852 0.100907485427384 
60 0.100830 0.100904026370804 
80 0.100863 0.100903996274708 

100 0.100859 0.100903996124993 
120 0.100979 0.100903995972737 
140 0.100961 0.100903995978357 
160 0.101015 0.100903995976236 
180 0.101039 0.100903995976198 

20 500 0.100090040445593 0.100925 0.100925224160906 
40 0.100033 0.100093996177684 
60 0.100009 0.100090077056242 
80 0.100045 0.100090040827442 

100 0.100041 0.100090040634719 
120 0.100170 0.100090040440984 
140 0.100152 0.100090040448810 
160 0.100210 0.100090040445689 
180 NaN 0.100090040445629 

Besides the regular Pade approximants and enhanced series we include enhanced 
Pade approximants with denominators of degree 5 (low) and of degree N/2 + 1 
(high). Note that, for very large N, approximants of low denominator degree 
perform better than diagonal ones. 

Finally, we present an example of a function whose singularities are not real. 
Even the simple conformal transformation (4) can provide excellent approxi- 
mations in such cases. 

* f(Z)_ / (1+(1+i)z)(1+(1-i)z) 
Vf(z) (+O(+i)z)(1+O(1-i)z) 

In this case, the coefficients of the enhanced series were calculated as products 
of series whose coefficients are given by simple formulae. It is easy to check 
that the optimal value for the parameter is B = 0.1 . The computer produced 
NaN ("Not a Number"), an overflow indicator, in the case of the [90/90] direct 
approximant for z = 500. 

In Table 3 we show some values of several [ N / N ] Pade and enhanced Pade 
fractions. The qualitative picture remains unchanged. 
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